

FLORIDA SOLAR ENERGY CENTER

Creating Energy Independence Since 1975

The Future for Power from Photovoltaic Systems

Dr. David Block Florida Solar Energy Center

2006 International Workshop on Pollution Prevention and Sustainable Development

What is the Florida Solar Energy Center?

Florida Solar Energy Center

- Created in 1975 by the Florida Legislature
- The energy research institute of the state of Florida
- Mission is research, testing and education
- More than \$9 12 million annually in external contracts and grants
- The experience, staff (>140) and capabilities to help solve our energy problems and help meet our energy needs
- Began as a "solar energy" center, but grew into many new research and development areas
- Housed in one of the world's most energy-efficient buildings.

FSEC Program Areas

- **♦ High-Performance Buildings** (energy efficiency)
- ◆ Solar Thermal Systems (today's cost-effective solution)
- **◆ Photovoltaics** (solar electricity)
- ◆ Testing & Certification (protecting Florida's citizens)
- ◆ Hydrogen and Fuel Cells (the future's fuels and engines)
- ◆ Education and Training (Florida's workforce for today and the future)
- ◆ Alternative Fuels & Transportation (an agricultural opportunity for Florida)

What is PV?

Photovoltaics

1839 Edmund Bequerel

1905 Albert Einstein

1954 Bell Laboratories

1960s the space industry

Solar Applications

- PV Numbers
 - $1kWp \cong 100 \text{ ft}^2$
 - 1 kWp x 4hours/day \cong 4 kWh/day

Solar Applications

- ♦ Solar Thermal
 - Water Heating
 - Space Heating
- Photovoltaics
 - Grid Tied
 - Stand-Alone
 - UPS

Residential Grid-Tied Communities

Small rooftop systems in a PV community

PV and Buildings

City of Lakeland

New Smyrna Beach, Florida

The Art of the Possible

The First "Zero Energy Home"

3 July 2 State of the state of

Efficiency First

What about Economics?

- Our project: "Cost is no object"
- \$23,000 more to build
 - 12 % increase to cost (1998)
- ◆ PV system cost \$40,000
- ◆ Building efficiency measures will save≈ 8,000 kwh/year
 - \$960 annual savings at \$0.12/kWh
- PV system will produce≈ 5,500 kWh/year
 - worth \approx \$660 at \$0.12 kWh

www.dsireusa.org June 2006

available in

40 states + D.C.

Net Metering Rules

State-wide net metering for all utility types

State-wide net metering for certain utility types (e.g., IOUs only)

Net metering offered by one or more individual utilities

#s indicate system size limit (kW); in some cases limits are different for residential and commercial as shown

- ◆ State level electricity policy for small energy generation sources
- ◆ System owner receives credit for the unused portion of the electricity generated
- ◆ The monetary value of the retail credits can vary from the customer's rate.
- Credits may be banked for a limited period

Utility-Interactive PV System

Inverter/Power **Conditioner**

AC Loads

Distribution Panel

Electric Utility

PV System with UPS Option

Grid-Tied System with Critical Load Backup (UPS)

Where do we use energy?

Avg Daily Consumption = 35 kWh

Matching PV Output to Loads

Customer Attitudes

Table A-1. Preferences among Energy Resources

Energy Resource	Somewhat or strongly favor %	Somewhat or strongly oppose %	Don't know %	Totals
Solar	93	5	2	100
Wind	91	9	-	100
Natural gas	83	11	6	100
Geothermal	71	13	16	100
Landfill gas	64	18	18	100
Forest waste	59	29	12	100
Nuclear	31	63	- 6	100
Coal	24	69	7	100

- Consumers favor renewables
- Willingness to pay has limits

S0 = 35%; Some other amount = 7%

Figure B-10. Incremental Monthly Amounts Respondents Are Voluntarily Willing to Pay for Home-Based Rooftop PV System

Willingness to Pay for Renewable Energy

Renewable Electricity Standards

PV Rebates

Per Capita Electrical Use (Indexed to the 1980 Value)

Data Source: U.S. DOE Energy Information Administration, 2004

Non-Appropriated Public Benefits Funds

PV on Florida Rooftops

Actual and Future DOE Target Costs for PV*

http://www.fsec.ucf.edu/echronicle/archives/2006/Q2/sunshine.htm

PV Module	\$4.31/watt
Other Hardware	\$1.65
Labor	\$2.04
Total	\$8.00/watt

PV Life Cycle Cost

\$/kWp	\$/kWh
\$ 8000	\$ 0.28
\$ 6000	\$ 0.21
\$ 4000	\$ 0.15

The End